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ABSTRACT

Four different versions of the HAILCAST hail model have been tested as part of the 2014–16 NOAA

Hazardous Weather Testbed (HWT) Spring Forecasting Experiments. HAILCAST was run as part of the

National Severe Storms Laboratory (NSSL)WRF Ensemble during 2014–16 and the Community Leveraged

Unified Ensemble (CLUE) in 2016. Objective verification using the Multi-Radar Multi-Sensor maximum

expected size of hail (MRMSMESH) product was conducted using both object-based and neighborhood grid-

based verification. Subjective verification and feedbackwas provided byHWTparticipants. Hourlymaximum

storm surrogate fields at a variety of thresholds and Storm Prediction Center (SPC) convective outlooks were

also evaluated for comparison. HAILCASTwas found to improvewith each version due to feedback from the

2014–16 HWTs. The 2016 version of HAILCAST was equivalent to or exceeded the skill of the tested storm

surrogates across a variety of thresholds. The post-2016 version of HAILCAST was found to improve 50-mm

hail forecasts through object-based verification, but 25-mm hail forecasting ability declined as measured

through neighborhood grid-based verification. The skill of the storm surrogate fields varied widely as the

threshold values used to determine hail size were varied. HAILCASTwas found not to require such tuning, as

it produced consistent results even when used across different model configurations and horizontal grid

spacings. Additionally, different storm surrogate fields performed at varying levels of skill when forecasting

25- versus 50-mm hail, hinting at the different convective modes typically associated with small versus large

sizes of hail. HAILCAST was able to match results relatively consistently with the best-performing storm

surrogate field across multiple hail size thresholds.

1. Introduction

Hail is a significant severe weather hazard in the

United States. For example, four of the seven $1 billion

dollar severe weather disasters that occurred in the

United States in 2017 were due largely or entirely to hail

damage, including one hailstorm that caused over

$1.5 billion of property damage in Colorado alone (NCEI

2017). Yet, successfully forecasting hail occurrence re-

mains difficult, as the processes involved in producing hail

are not fully resolved by current convection-allowing

models (CAMs). Recent research has attempted to solve

this issue from multiple directions, including through the

use of machine-learning algorithms trained on model

data (Gagne et al. 2017) and a physically based one-

dimensional hail model called HAILCAST that can be

embeddedwithin aCAM(Adams-Selin andZiegler 2016).

HAILCAST has been run and tested as part of the

NOAA Hazardous Weather Testbed (HWT) Spring Fore-

casting Experiments (SFEs) since 2014 (Jirak et al. 2014).

Each year, participants have subjectively evaluated its per-

formance, and the data itself were archived for verification.

Modifications were made to the HAILCAST model each

year in response to the feedback.Thisworkdetails eachyear’s

verification results and participant feedback, and the modifi-

cations made to HAILCAST in response to that feedback

and objective evaluations. Multiple verification methods

are used to evaluate HAILCAST hail size predictions.Corresponding author: Rebecca D. Adams-Selin, rselin@aer.com
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Section 2 discusses HAILCAST’s structure and its

yearly modifications. Section 3 reviews the data sources

used for verification, including observational datasets

and the HWT SFE ensembles. The two methods used to

verify the forecasts are provided in section 4, and sec-

tions 5 and 6 discuss the results obtained from these two

methods.

2. HAILCAST structure and changes

HAILCAST consists of a one-dimensional, time-

dependent hail growth model designed to be fed updraft

information from a CAM. For this study, HAILCAST

has been embedded within the Weather Research

and Forecasting (WRF) Model with the Advanced

Research solver (Skamarock et al. 2008). A full de-

scription of WRF-HAILCAST is provided in Adams-

Selin and Ziegler (2016). This study will focus on the

different versions of WRF-HAILCAST run as part

of the 2014–16 HWT SFEs. An overview of the 2015

SFE is available in Gallo et al. (2017), and opera-

tional plans for these experiments can be found

online (https://hwt.nssl.noaa.gov/Spring_2014, https://

hwt.nssl.noaa.gov/Spring_2015, and https://hwt.nssl.

noaa.gov/Spring_2016).

Adams-Selin and Ziegler (2016) explains all the

modifications made to the original HAILCAST

model developed by Poolman (1992), Brimelow et al.

(2002), and Jewell and Brimelow (2009), including in-

corporating multiple embryo sizes, the insertion of

embryos at multiple temperatures above 08C, variable

density, parameterization of hailstone motion across the

updraft, and improved ice collection efficiency and liquid

water shedding thresholds. These modifications were in-

corporated over the course of 2014–16, using constructive

feedback from each year’s SFE. The major modifications

incorporated each year are detailed in Table 1.

The 2014 version of HAILCAST (v2014 hereafter)

used five percentile points along the microphysical

graupel size distribution to determine initial embryo

sizes. The lowest 1st, 2nd, 5th, 10th, and 20th percentiles

were used. HAILCAST 2015 (v2015) replaced these five

variable embryo sizes with five constant, but small, em-

bryos between 10 and 50mm, and inserted them at the

first model level cooler than 08C. HAILCAST v2016 in-

troduced quite a fewmoremodifications.Hailstoneswere

no longer required to effectively remain in the center of

the one-dimensional updraft, only falling out once they

grew large enough to overcome the updraft. Instead, a

time-dependent multiplier was applied to the updraft

speed to roughly parameterize the horizontal motion of

the hailstone across the updraft. Many observational and

modeling studies have found hailstone embryos are typ-

ically located on the updraft edge and are then advected

horizontally across the updraft (Heymsfield et al. 1980;

Heymsfield 1982; Heymsfield and Musil 1982; Nelson

1983; Heymsfield 1983a,b; Ziegler et al. 1983; Foote 1984;

Miller et al. 1990). Embryo sizes were changed to a range

between 5 and 10mm, more in line with observations of

hailstone embryos made by Magono and Nakamura

(1965), Heymsfield (1982), Heymsfield and Musil (1982),

Ziegler et al. (1983), and Nelson and Knight (1987).

TABLE 1. Modifications made to each version of HAILCAST.

Version

Brimelow et al. (2002);

Jewell and Brimelow (2009) v2014 v2015 v2016 vRerun

No. of embryos 1 5 5 5 5

Embryo type Liquid Frozen Frozen Frozen Frozen

Embryo size 300mm From graupel size

distribution

10–50mm 5–10mm 5–10mm

Embryo

insertion level

Cloud base First model level

with graupel

cooler than 08C

First model level

cooler than 08C
2138C 288 and 2138C

Hailstone density Fixed at 900 kgm23 Variable dry growth Variable dry

growth

Rime layer soaking

and variable dry

growth

Rime layer soaking

and variable dry

growth

Motion across

updraft

Fixed in center Fixed in center Fixed in center Parameterized

horizontal motion

Parameterized

horizontal

motion

Ice collection

efficiency

Step function Step function Step function Linear function Linear function

Below-cloud

melting

Elevated

soundings only

All profiles All profiles All profiles All profiles

Liquid water

profile

From 1D cloud

model

WRF cloud water WRF cloud water WRF cloud water Adiabatic

Output Mean size Mean size Mean size Max size
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Additional changes were made to the algorithm in

response to comments from the 2016 SFE, in a version

termed vRerun. Details about the modeling setup used

for vRerun are provided in the next section. The main

modification was an attempt to account for the typical

CAM horizontal grid spacing of 1–4km not fully re-

solving the boundedweak-echo region (BWER) typically

found within an updraft core of a hail-producing storm

(Heymsfield and Musil 1982). The weak-echo region is

largely devoid of precipitation-sized particles, resulting in

an almost adiabatic cloud water profile. HAILCAST

vRerun calculates an adiabatic cloud liquid water profile

from theWRFvertical temperature and pressure profiles,

and the water vapor mixing ratio at cloud base. Full de-

tails of this calculation are provided in Adams-Selin and

Ziegler (2016). This adiabatic liquid water profile is used

in vRerun instead of the WRF cloud liquid water profile.

3. Data sources

a. NSSL-WRF and CLUE ensembles

WRF-HAILCAST was run as part of the National

Severe Storms Laboratory (NSSL) WRF Ensemble

during all of the 2014, 2015, and 2016 SFEs. The NSSL-

WRF (Kain et al. 2010) Ensemble is a WRF-ARW

ensemble with 4-km horizontal grid spacing that is run

daily at 0000 UTC over the continental (CONUS) with

forecasts out to 36h. The ensemble is a single-physics

design and uses the WSM6 microphysics scheme (Hong

and Lim 2006). Spread is given by variations in the initial

and boundary conditions by using either the National

Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS) analysis or 2100 UTC Short-

Range Ensemble Forecast (SREF; Du et al. 2014) 3-h

forecasts. In 2014, the ensemble had 9 members but

expanded to 10 members in 2015 and 2016.

In 2016, an additional, 3-km horizontal grid-spacing

WRF ensemble was added, called the Community Lev-

eraged Unified Ensemble (CLUE). A full description of

CLUE’s design is available in Clark et al. (2018). Similar

to the NSSL-WRF ensemble, all members of CLUE are

initialized at 0000UTC, and forecasts covering a CONUS

domain run out to 36h or more. The results shown here

are from the 10 ‘‘single physics’’ members of CLUE,

which uses the Thompsonmicrophysics parameterization

for all members. These specific members were run by the

Center for Analysis and Prediction of Storms (CAPS)

and used radar data assimilation at initialization. Spread

is provided by variations in the initial and boundary

conditions, using SREF perturbations [see Clark et al.

(2018) for further details].

When verifying both sets of ensembles, only forecast

hours 12–36 (or 1200–1200 UTC the following day) are

retained to allow time for convective spinup and to

match with the SPC forecast period. The hail size field

from each member was accumulated over the 24-h

period by saving the maximum hail size at any grid

point within that 24-h period. This accumulation was

done to lessen the impact of WRF convective timing on

HAILCAST skill scores, as convective timing issues are

unrelated to HAILCAST skill.

b. Rerun

To test additional modifications made to the

HAILCAST algorithm after the 2016 SFE, two 3-week

periods during the 2014 and 2015 SFEs were rerun

using WRF with vRerun of HAILCAST. The exact

dates were 7–21 May 2014 and 4–22 May 2015. The

domain, initialization time, forecast duration, andmodel

parameterizations were all the same as those used for

the control members of the NSSL-WRF ensemble

during the 2014 and 2015 SFEs, with one exception:

WRF version v3.8.1 was used instead of v3.4.1. Again,

only forecast hours 12–36, or 1200–1200 UTC the next

day, were used for verification, and the maximum hail

size over the 24-h period was retained.

c. Storm Prediction Center forecasts

In addition to the model data listed above, the Storm

Prediction Center (SPC) day 1 convective outlooks for

hail were also included in the verification process, to

examine if HAILCAST could provide any information

in addition to the convective outlooks. The 0600 UTC

outlook, valid from 1200 to 1200 UTC the following

day, was used. Convective outlook probabilities are

issued for selected intervals only: specifically, 5%,

15%, 30%, 45%, and 60%. The outlook probabilities

were reprojected onto the NSSL-WRF 4-km grid for

verification using nearest-neighbor interpolation.

d. Maximum estimated size of hail

Verification of hail size was performed using the

NOAA/NSSL Multi-Radar Multi-Sensor (MRMS)

maximum estimated size of hail (MESH) product

(Smith et al. 2016). The MRMS MESH (MESH here-

after) is produced by using the MRMS 1-km multiradar

reflectivity mosaic, and a power-law relationship found

by Witt et al. (1998) and Lakshmanan et al. (2006) be-

tween radar reflectivity values above the melting level

and hail observed with storms in Oklahoma and Florida.

MESH has been found to correlate well with the spa-

tial coverage of hailfall observed by higher-resolution

datasets (Wilson et al. 2009; Cintineo et al. 2012). It also

demonstrates skill when delineating surface hailfall into

general size categories (Wilson et al. 2009; Ortega 2018),

but MESH does not have a one-to-one correlation
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between the observed and MESH-estimated hail sizes

(see Ortega 2018, Fig. 20). All statistical evaluations

will bin the MESH hail size data into categories

of 19–24, 25–49, 50–74, and .75mm instead of using

it directly. Although these thresholds do differ slightly

(,5mm) from the values found by Ortega (2018) to

most closely correspond to nonsevere, severe, and signifi-

cantly severe hail, they do align with thresholds used by

Gagne et al. (2017) and Adams-Selin and Ziegler (2016).

Witt et al. (1998) developed the MESH power-law re-

lationship using only hail observations of 19mm (0.75 in.)

and larger (see their Fig. 8). Thus, in this study all MESH

data used for verification were required to be at least

19mm. Again, the dataset was accumulated over a 24-h

period by taking the maximum hail size observed at any

grid point during the period. The 0.018-resolution MESH

data were reprojected onto the NSSL-WRF domain by

assigning the maximum hail size of the MESH product

within a 2-km radius of eachWRFgrid point to that point.

The reprojection process for the CLUE domain was

similar except a 1.5-km radius was used. This ‘‘maximum

nearest neighbor’’ interpolation method was used to

ensure the largest hail size seen in the MESH dataset

within each hail swath was preserved.

4. Verification methods

Verification of convective-based hazards, with their

implicit high spatial and temporal variability, is a difficult

proposition. Accumulating the datasets into 24-h periods

helps eliminate some of the uncertainty due to temporal

variability among observed and forecasted convection.

However, spatial variability is still an issue. Hail fore-

casting relies not only on the successful prediction of hail

size within convection, but also the successful prediction

of the convection itself. However, only one of these

factors can be controlled by an embedded hail model.

To isolate these two factors, two different verification

methods are used. The first method, object-based verifi-

cation, uses the Method for Object-Based Diagnostic

Evaluation (MODE; Davis et al. 2006a,b; available

online at http://www.dtcenter.org/met/users) to match

forecasted and observed swaths of hail size. By matching

swaths across space, this verification method eliminates

some of the dependency on correctly forecasted convec-

tion. The second method uses neighborhood grid-based

verification.

a. Object-based verification

To utilize the object-based verification technique,

the MESH dataset was accumulated over a 24-h period

and reprojected onto the NSSL-WRF and CLUE

model domains, as already described above, before

being input into MODE. The MODE configuration

chosen was designed to compare clusters of hail

swath objects on the spatial scale of a swath produced

by a single mesoscale convective system or a family of

supercells [see Fig. 13 in Adams-Selin and Ziegler

(2016) for an example of matched storm clusters].

Within each hail swath cluster, the maximum hail

size was retained. Two-dimensional histogram plots

showing the frequency of forecast versus observed

maximum cluster hail sizes were created (e.g., Fig. 4).

To construct these diagrams, bin counts for 25-mm hail

size intervals were determined, and then the counts

were normalized by the total number of objects for that

year. A perfect forecast would cluster all bin counts

along the 1-to-1 correlation line. Binned intervals were

used instead of scatterplots because of the lack of skill

MESH shows in discriminating among observed hail

sizes at finer intervals (Cintineo et al. 2012; Ortega

2018). Thresholds of 25 and 50mm (1 and 2 in.) were

also used to compare observed and forecast cluster

maximum hail sizes and construct typical contingency

table statistics (Wilks 2006). For example, if matched

forecast and observed clusters both had maximum

sizes above 50mm, that would be considered a hit; if

only the forecast cluster had a maximum size above

50mm, that would be considered a false alarm. These

statistics can then be used to calculate the probability

of detection (POD) and false alarm ratio (FAR) and

plotted onto a performance diagram, as described by

Roebber (2009).

In both instances, hail swath clusters were only com-

pared if there were corresponding clusters in both the

forecast and observed fields. By only evaluating matched

clusters, the penalty forWRF failing to forecast convection

is eliminated. In this respect the object-based verification is

best characterized as an evaluation of the distribution of

the forecasted hail size, not an evaluation of the occurrence

of any hail.

b. Grid-based verification with Gaussian smoother

This verification technique was used to evaluateWRF

and WRF-HAILCAST’s hail forecasting skill as a

whole, testing its abilities to both forecast convection

and hail size within that convection. The technique used

is the ‘‘upscaling’’ neighborhood approach described by

Ben Bouallègue and Theis (2014) and in section 2b of

Schwartz and Sobash (2017). The NSSL-WRF ensemble

and vRerun 24-h period forecasts were remapped onto

the approximately 80-km NCEP 211 grid by setting the

value for each grid box equal to 1 if the forecast hail size

at any point within that grid box was larger than a given

threshold. An 80-km grid was selected to match SPC’s

severe weather outlooks, which predict the probability
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of severe weather occurrence within a 40-km radius. The

80-km binary probabilities found for each ensemble

member were then averaged, to create a forecast prob-

ability of the chosen threshold hail size for the ensemble.

Finally, a two-dimensional Gaussian smoother with a

standard deviation of 120 km was applied to the data

[as in Sobash et al. (2011) and Hitchens et al. (2013)] to

produce a forecasted probability field for a hail report

of the given threshold size within 40km. An observed

‘‘probability’’ field was created by feeding MESH data

through the same process. Example 25- and 50-mm

forecast and observed probability fields for a hail

event on 27 April 2011, along with the HAILCAST

vRerun forecast and MESH hail size, are shown in

Fig. 1. The corresponding SPC convective outlook and

storm reports for the same event are provided in Fig. 2.

When verifying the SPC probabilistic convective

hail outlooks, the probabilities were remapped onto the

same 80-km grid by using the maximum probability

within that grid box. Those probabilities were not ad-

ditionally treated by the Gaussian smoother. Because of

the discrete nature of the forecast probabilities, a 5%

forecast probability was considered verified if the ob-

served Gaussian field was between 5% and 14%, a 15%

probability between 15% and 29%, etc. For the obser-

vational dataset, the MESH hail size field was similarly

remapped onto an 80-km grid by using the largest hail

size within each grid box. The smoothed forecast prob-

ability field could then be directly compared to the

resampled observed data.

Performance and attributes diagrams (Wilks 2006)

were then constructed using 25- and 50-mm thresholds.

In the attributes diagrams, climatology was calculated

each year using the sample climatology. The Brier skill

score (BSS) values (Murphy 1973) were calculated using

climatology as the reference value.

FIG. 1. Hail size (mm) from (a) MESH and (b) vRerun of HAILCAST from 0600 UTC 27 Apr to 0600 UTC 28

Apr 2011. Gaussian-smoothed probability of hail size larger than 25mm from (c) MESH and (d) HAILCAST, and

larger than 50mm for (e) MESH and (f) HAILCAST.
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c. Storm surrogate variables

Storm-surrogate fields such as updraft helicity have

been shown to be successful proxies for predicting se-

vere weather. For example, Sobash et al. (2016) showed

ensemble surrogate severe probability forecasts (SSPFs)

of updraft-helicity-produced forecasts with skill com-

parable to SPC outlooks. Gagne et al. (2017) found

SSPFs of updraft helicity, column total graupel, and

reflectivity at the2108C level to produce positive levels

of skill when specifically forecasting hail. Wendt et al.

(2016) examined similar storm surrogate hail forecasts

and found 2–5-km updraft helicity, using a tuned

threshold, was the most successful during the 2012–15

HWTs. Thus, the question of whether or notHAILCAST

can improve hail forecasts above the skill levels shown by

these storm surrogate fields is valid.

Fields of maximum 2–5-km updraft helicity (UHMAX),

column-maximum updraft speed (WMAX), maximum

column-integrated graupel (COLGMAX), and 1-km re-

flectivity (DBZ1KMMAX) were all verified, along with

the HAILCAST data, using the same two methods de-

scribed above. ‘‘Hourly maximum fields’’ of each of these

variables were output in each model output file, as in Kain

et al. (2010).Maximumfields over the full 24-h period from

1200 to 1200 UTC were then calculated similarly to the

hail field as described in section 3 and run through

the object-based and grid-based verification methods as

described above. A range of thresholds were examined

for each surrogate field and are given later (see Table 3).

Verification figures were then constructed using two sets

of thresholds selected from the range. The first set, or

‘‘a priori,’’ thresholds, were estimated from which

thresholds showed the best results through a review of

the literature (Sobash et al. 2011; Wendt et al. 2016;

Gagne et al. 2017) and previous experience with storm

surrogate parameters. This set of thresholds is meant to

mimic thresholds an operator would choose upon first

designing a model configuration (the italicized rows in

Table 3). The second set of thresholds, or ‘‘best’’

thresholds, were chosen after the model runs as the

thresholds that produced the highest BSS values over

the entire period (boldface rows in Table 3). These

thresholds are meant to represent the best possible

predictive skill for storm surrogate fields.

For the MODE configuration file within the object-

based verification method, both a ‘‘convolution radius’’

and a ‘‘convolution threshold’’ are required. The convo-

lution radius is used to average over that number of grid

points when creating a smoothed field; contiguous areas

in the smoothed field that contain values larger than the

convolution threshold are considered hail swath objects.

A convolution radius of four grid points was selected, as

recommended by Davis et al. (2006a,b). A convolution

threshold of 12.5mm (0.5 in.) was selected in agreement

FIG. 2. SPC day 1 convective hail outlook and storm reports from 1300 UTC 27 Apr to

1200 UTC 28 Apr 2011.
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with Adams-Selin and Ziegler (2016) for HAILCAST;

for the storm surrogate fields, convolution thresholds of

37.5m2 s22 for UHMAX for a 3-km grid and 20m2 s22

for a 4-km grid, 17.5ms22 for WMAX, 12.5kgm22 for

COLGMAX, and 45dBZ for DBZ1KMMAX were

used. See Table 2 for additional details on the MODE

configuration.

5. Results from object-based methods

The results fromobject-based verificationofHAILCAST

hail forecasts from all 2014–16 NSSL-WRF and CLUE

members, as well as the rerun, are shown in Figs. 3 and 4.

Figure 3a displays the skill of HAILCAST in forecasting

hail swath objects with a maximum hail size of at least

50mm. Determining HAILCAST’s skill in forecasting

objects with a maximum size of 25mm is more difficult.

As mentioned in section 3d, only MESH values of 19mm

and larger were used. Objects with maximum sizes be-

tween 19 and 25mmoccurred less frequently than objects

with maximum sizes larger than 25mm. Conversely,

performance diagrams are designed to display the skill of

forecast events that occur only relatively infrequently as

they do not incorporate correct forecasts of null events

(Roebber 2009). To account for this discrepancy, Fig. 3b

displays HAILCAST’s skill in forecasting objects with a

maximum size of 25mm or larger using a plot comparing

the probability of detection versus the percent correct

rejection (PCR), as opposed to the success ratio as in

Fig. 3a. PCR measures the number of observed ‘‘no’’

objects (objects with a maximum hail size less than

25mm) that were correctly forecast [Eq. (7) in Roebber

(2009)]. Contours of the Peirce skill score (PSS; also

known as the Hanssen and Kuipers skill score), which is a

better discriminant of skill than the critical success

index for more frequent events in a population (Peirce

1884; Woodcock 1976; Manzato 2007), are provided

for reference. A perfect forecast in Fig. 3b is still

in the top right-hand corner, just as in Fig. 3a. As a

symbol shifts to lower values of POD in Fig. 3b, fewer

objects with observed .25-mm hail size were correctly

forecast; as it shifts to lower PCR, fewer objects with

observed ,25-mm hail size were correctly forecast.

While Figs. 3 and 4 generally indicate the same results,

the combination of the two can more fully explain the

TABLE 2. MODE configuration.

Configuration option Setting

Convolution radius Four grid points

Convolution threshold 0.5 in.

Area threshold Four grid points

Max distance allowed between centroids 400 km

FIG. 3. Object-based verification for the 2014 (blue), 2015 (red),

and 2016 (green) NSSL-WRF ensemble members; the 2016

CLUE single-physics members (purple); and vRerun (gold).

Symbols for each year, ensemble, and rerun are as labeled.

(a) Performance diagram for prediction of objects with a maxi-

mum hail size of 50 mm or larger. Solid lines of CSI are labeled;

dashed bias lines are 1 along the diagonal, and correspond to

overforecast values of 1.3, 1.5, 2, 3, 5, and 10 above the diagonal,

and underforecast values of 0.8, 0.5, 0.3, and 0.1 below the di-

agonal. (b) Plot of probability of detection of objects with a

maximum hail size of 25 mm or larger vs the percent of correct

rejections of objects with maximum hail size less than 25mm.

Dashed lines are lines of constant PSS as per Peirce (1884).

Perfect forecasts in both (a) and (b) would be in the top-

right corner.
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different models’ levels of performance. The results from

2014 (Figs. 3 and 4a) indicate a large overforecasting bias,

particularly for hail sizes larger than 50mm. While en-

semble members were able to make somewhat skillful

forecasts of 25-mm hail swath objects (Figs. 3b and 4a),

members frequently predicted many more .50-mm hail

swaths than actually occurred (Fig. 3a). The bin counts are

also clustered below the 1-to-1 correlation line in Fig. 4a.

Subjective feedback from the SFE agreed with this as-

sessment. Per the 2014 SFE Preliminary Findings and

Results report (available online at http://hwt.nssl.noaa.gov/

Spring_2014/HWT_SFE_2014_Prelim_Findings.pdf),

‘‘it became very apparent that HAILCAST substan-

tially over-predicted hail sizes.’’

The only change made to HAILCAST between v2014

and v2015 was the embryo size determination method

(Table 1). Using percentile points from the graupel size

distribution within the microphysical parameterization

greatly increased the dependency of the HAILCAST

hail size forecast on which microphysics scheme was

used. This variability was particularly evident with the

Thompson microphysics scheme, which produced em-

bryo sizes over twice the size of other schemes such as

Morrison or WRF double-moment 6-class [WDM6; see

Adams-Selin and Ziegler (2016, Fig. 2)]. Even with the

WSM6 microphysics scheme, however, the NSSL-WRF

ensemble still saw a high forecasting bias.

To correct this problem before the 2015 SFE, embryo

sizes in v2015 HAILCAST were set to constant values

within a range of 10–50mm. These sizes are significantly

smaller than are observed in nature (Magono and

Nakamura 1965; Heymsfield 1982; Heymsfield and

Musil 1982; Ziegler et al. 1983; Nelson andKnight 1987),

but larger embryo sizes seemed to result in continued

overforecasting. Figure 4b and the red symbols in Fig. 3,

results from v2015, show an underforecasting of 50-mm

hail (Fig. 3a, as well as a slight decrease in the ability to

forecast,25-mm hail (Fig. 3b). When asked at the 2015

SFE if hail size forecasts provided ‘‘additional useful in-

formation relative to traditionally used hourly maximum

FIG. 4. Two-dimensional histogram plot showing the frequency of maximum observed and forecasted hail size values for each matched

cluster in the object-based verification: (a) 2014, (b) 2015, and (c) 2016 NSSL-WRF control members, (d) 2016 CLUE control member,

and (e) vRerun. Number within each bin is the number of matched object clusters; color shading is normalized by the total number of

matched clusters each year, displayed next to the year label in each panel.
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fields (HMFs) like UH [updraft helicity]’’, respondents

unanimously answered ‘‘yes’’ (results available at http://

hwt.nssl.noaa.gov/Spring_2015/HWT_SFE_2015_Prelim_

Findings_Final.pdf). The SFE questionnaire did not ask

participants to elaborate on their reasons. Such answers

could indicate an impression that HAILCAST is more

skillful, or simply a preference to viewing forecasts of hail

size in units of hail size, as opposed to requiring thresholds.

To address the large hail underforecasting problem in

v2015, it was desired to increase the embryo sizes in

v2016. However, if they were increased to typical ob-

served sizes (1–10mm), overforecasting became an is-

sue. Review of one-dimensional hailstone trajectories

within the v2015 model revealed that hailstones were

frequently being advected above the supercooled water

layer into the top of the storm by strong updrafts, re-

ducing their ability to grow (see Adams-Selin and

Ziegler 2016, Fig. 8). Because of the time-invariant na-

ture of the updraft in v2015 (Table 1), growing hail-

stones were basically ‘‘stuck’’ in the center of the updraft

until either they grew big enough to fall out or the

updraft shut off. As already mentioned, observational

and modeling studies indicate hailstone embryos form

around the edge of the updraft before being advected

horizontally across the core [see Heymsfield and Musil

(1982, Fig. 13)]. HAILCAST v2016 incorporated a time-

dependent multiplier to the updraft speed to simulate

the hailstone’s horizontal motion relative to the updraft

[see Eq. (1) in Adams-Selin and Ziegler (2016)]. With

this new multiplier, embryo sizes and insertion temper-

atures closer to observed values could be used (Table 1).

HAILCAST v2016 results are shown by green (NSSL-

WRF) and purple (CLUE) symbols in Fig. 3 and Figs. 4c

and 4d. The modifications made between v2015 and

v2016, while improving the underlying physics of the

algorithm, slightly improved the verification skill shown

for 50-mm hail in Fig. 3a, led to some decrease in fore-

casting ability for 25-mm hail but still proved skillful

(Fig. 3b), and resulted in minimal differences in Figs. 4c

and 4d. Figure 3a still indicates an underforecasting of

50-mm hail, also similar to v2015. Subjective feedback

from the 2016 SFE was more positive, with HAILCAST

being rated the most highly among the three hail fore-

casting methods being evaluated [the Gagne machine-

learning method (Gagne et al. 2017) and the Thompson

method, which directly uses graupel size information

from the microphysical parameterizations]. SFE feed-

back indicated larger areal coverage of 25-mm hail

compared to the other twomethods (see p. 28 of http://hwt.

nssl.noaa.gov/Spring_2016/HWT_SFE_2016_preliminary_

findings_final.pdf).

Interestingly, the NSSL-WRF 4-km ensemble (green)

and CLUE 3-km ensemble (purple) did not show

drastic differences in their verification results at 50-mm

thresholds (Fig. 3a). In Fig. 3b, the CLUE 3-km en-

semble members do show a reduction in skill in fore-

casting 25-mm hail, which is largely a result of slight

underforecasting of objects with 25-mm hail (not

shown). Figures 4c and 4d show only a small improve-

ment between the distribution of maximum hail sizes

from matched clusters between the NSSL-WRF

(Fig. 4c) and the CLUE (Fig. 4d) results. The consis-

tency of results across different model horizontal grid

spacings indicates that the inclusion of parameterized

horizontal motion reduced HAILCAST’s sensitivity to

the absolute values of the updraft strength. It also in-

dicates HAILCAST can perform consistently across

different microphysical parameterizations. Thus, as of

v2016, HAILCAST can be run withinmodels for a range

of horizontal grid spacings or microphysical parame-

terization schemes without needing to be tuned or its

forecasting thresholds changed.

The combination of verification results and SFE

feedback indicated that v2016 of HAILCAST was still

underforecasting large hail (50mm and larger), but po-

tentially overforecasting smaller (25mm) hail. To ad-

dress these biases, the moisture profile was examined.

As already mentioned in section 2, hail-producing con-

vection typically includes a BWER that contains an

adiabatic cloudwater profile due to a reduced number of

precipitation scavengers (Heymsfield and Musil 1982).

Thus, HAILCAST vRerun was modified to use an adi-

abatic cloud water profile based on the model cloud-

base water vapor mixing ratio and the vertical profile of

temperature and pressure. This was employed instead of

directly using the model cloud water profile, which

would have been artificially scavenged by precipitation

due to CAMs not fully resolving the BWER region [see

Adams-Selin andZiegler (2016), section 3a].With larger

amounts of liquid cloud water available, vRerun was

able to produce larger hailstones, reducing the bias and

significantly improving the skill in forecasting 50-mm

hail (yellow star in Fig. 3a), while improving the skill

when forecasting 25-mm hail objects (Fig. 3b) compared

to the CLUE members and one 2016 NSSL-WRF

member. In Fig. 4e, the number of forecast and ob-

served matched cluster maximum hail sizes both falling

between 50 and 75mm is increased compared to pre-

vious years, indicating an increased ability of vRerun to

correctly forecast this larger hail.

Validation of storm surrogate fields from the control

member of each ensemble for 50-mm hail swath objects

over the same four time periods is presented in Fig. 5.

The strong dependence of skill upon the surrogate

threshold chosen is immediately apparent. The largest

symbol in each panel in Fig. 5 corresponds to the ‘‘best’’
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threshold as determined by the Brier skill score (see

Table 3). Generally,WMAX (purple, triangles) provides a

neutral to slight overforecast of 50-mm hail objects, while

COLGMAX (red, squares) more strongly overforecasts.

The tendency of DBZ1KMMAX (green, diamonds) is

toward underforecasting. The best-performing surrogate is

UHMAX (yellow, circles). HAILCAST is only able to

show roughly equivalent skill to the updraft helicity as a

predictor of 50-mm hail with vRerun, after all modifica-

tions have been incorporated.

For the object-based validation of the 3-km CLUE, the

range of storm surrogate thresholds used for the calculation

of skill was shifted to account for more fully resolved up-

drafts and to ensure the range covered a wide range of skill

levels. COLGMAX was evaluated from 20 to 50kgm22,

DBZ1KMMAX from 36 to 60dBZ, UHMAX from 60 to

160m2s22, and WMAX from 20 to 50ms21. Because the

3-km CLUE was not verified using the grid-based verifi-

cationmethod owing to its different resolution, a set of best

thresholds as determined by BSS calculations was not

available for the 3-km configuration. Instead in Fig. 5d, the

largest symbols correspond to the threshold producing the

highest critical success index (CSI) score: 35kgm22 for

COLGMAX, 60dBZ for DBZ1KMMAX, 140m2s22 for

UHMAX, and 35ms21 forWMAX.Despite the threshold

changes, however, all of the fields tend to overforecast

hail size. Both UHMAX and DBZ1KMMAX show the

largest change, shifting from almost no bias to a bias of

1.5. The significant change in skill between the 3- and 4-km

2016 ensembles highlights the importance of reevaluating

the selected threshold used to determine hail size

after a model horizontal grid-spacing, or potentially

even configuration, change.

6. Results from grid-based verification

The grid-based verification methods described above

in section 4b show generally similar results to the object-

based methods, which is encouraging. Performance di-

agrams for 25- and 50-mm hail forecasts are provided in

FIG. 5. Performance diagrams for object-based verification for 50-mm hail for HAILCAST and storm surrogate fields using a range of

thresholds for (a) 2014, (b) 2015, and (c) 2016 NSSL-WRF control members, (d) 2016 CLUE control member, and (e) vRerun. Storm

surrogate thresholds for the 4-km runs are the values given in Table 3. Thresholds in (d) are the same as the 4-km runs for COLGMAXand

DBZ1KMMAX, and range from 60 to 160m2 s22 for UHMAX and from 20 to 50m s21 for WMAX. The largest symbols in all panels

correspond to the best thresholds. CSI and bias lines are as in Fig. 3a.
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Fig. 6. The skill lines only show forecast probabilities

from 5% to 60%, the probability thresholds the SPC

uses to forecast hail. Specific probability thresholdsmost

frequently used by the SPC (15%, 30%, and 45%) are

additionally highlighted. These thresholds were chosen

to evaluate HAILCAST’s direct use to the forecaster.

Figure 6 shows that v2014 of HAILCAST overforecast

both 25- and 50-mm hail, as was also noticed in the pre-

vious section. The interval of skill between the 15% and

45% probabilities (indicated by upward- and downward-

facing triangles) is entirely in a region of positive bias for

both 25- and 50-mm hail. The 30% probability of 25-mm

hail has a bias of over 2 and that of 50-mm hail is ap-

proximately 3. As also noticed in the previous section,

HAILCAST v2015 and v2016 improve the 25-mm hail

forecast by reducing this overforecasting bias; the 15%–

45%probability interval is now centered about a bias line

of 1.5. However, 50-mmhail forecasts are reduced in skill,

with the 30% forecast probability of v2015 or v2016

having a POD of either 0 or almost 0. (Grid-based valida-

tion of storm surrogate variables discussed later in the

sectionwill showa goodportion of the low skill is due to the

2016 NSSL-WRF struggling with predicting convection, at

least compared to the 2014 and 2015 results.) HAILCAST

vRerun improved 50-mmhail forecasts; its 30%probability

showed abias of 1 andpositive skill.Again, these results are

similar to those noted in the previous section.However, the

25-mm grid-based results (Fig. 6a) show vRerun is over-

forecasting 25-mm hail, although not as badly as in v2014.

The different trends seen in the 25- and 50-mm hail

forecasts seem to indicate that the hail size distribution

produced byHAILCAST versionsmight not have a long

enough right-hand tail or, in other words, may have

trouble with extra-large hail size values. Similar results

were presented in Adams-Selin and Ziegler (2016), al-

though it should be noted thatMESH also struggles with

TABLE 3. BSS values for grid-based verification of 25- and 50-mm hail probability forecasts from HAILCAST, storm surrogates for a

range of thresholds, and SPC day 1 convective outlooks. Skill scores in boldface are the ‘‘best’’ thresholds over the entire period and were

used to construct the attributes diagrams shown in Figs. 9 and 11. Skill scores in italics are the a priori thresholds andwere used to construct

Figs. 8 and 10. BSS is recorded as ‘‘null’’ if fewer than 1000 grid points contained nonzero forecast probabilities.

25mm 50mm

Field v2014 v2015 v2016 vRerun v2014 v2015 v2016 vRerun

HAILCAST 20.211 20.060 20.017 20.124 20.457 0.010 0.005 20.218

SPC 0.023 0.025 0.029 0.046

COLGMAX (kgm22)

20 20.049 20.164 20.215 20.028 20.984 21.481 21.285 20.726

25 0.007 20.021 20.060 0.009 20.396 20.735 20.537 20.398

30 20.011 20.001 20.035 0.015 20.129 20.246 0.179 20.186

35 20.038 20.021 20.042 20.000 20.035 20.051 20.051 20.066

40 Null Null 20.051 20.012 Null Null 20.017 20.018

50 Null Null Null Null Null Null Null Null

DBZ1KMMAX (dBZ)

36 23.213 24.411 24.435 Null 25.285 26.664 26.786 Null

48 21.327 21.811 22.042 20.237 23.175 23.733 23.942 20.747

55 20.051 20.121 20.177 Null 20.814 21.229 21.079 Null

60 Null Null Null Null Null Null Null Null

UHMAX (m2 s22)

30 0.032 0.026 20.035 20.010 20.693 20.872 20.589 20.411

40 0.039 0.044 20.011 20.002 20.402 20.448 20.298 20.220

50 0.030 0.037 20.008 20.007 20.223 20.213 20.146 20.132

60 0.018 0.022 20.011 20.014 20.117 20.085 20.059 20.071

70 0.003 0.008 20.017 20.018 20.057 20.019 20.022 20.036

80 20.010 20.004 20.024 20.023 20.026 0.011 20.004 20.019

90 20.019 20.015 20.029 20.028 20.009 0.027 0.005 20.009

WMAX (m s21)

12 20.840 21.246 21.025 20.336 22.545 23.131 22.613 21.681

16 20.408 20.686 20.512 20.149 22.082 22.557 22.077 21.228

20 20.105 20.283 20.184 20.035 21.526 22.022 21.396 20.768

22.5 0.004 20.102 20.089 0.002 21.059 21.561 20.962 20.474

25 0.032 0.000 20.036 0.013 20.546 20.892 20.516 20.244

30 20.030 20.019 20.035 20.008 20.019 20.031 20.061 20.028
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larger hail sizes (Cintineo et al. 2012; Ortega 2018). The

climatological rarity of extra-large hail sizes also makes

drawing conclusions about forecasting methods difficult.

However, to examine this possibility, Fig. 7 was con-

structed to examine the ratios between the number of

forecast and observed grid points over a range of hail

size intervals. The ratio was calculated by taking the

mean number of forecasted grid points across the en-

semble, and dividing by the number of observed grid

points, of each hail size bin. Again, fairly large interval

size bins are chosen in accordance with MESH’s abili-

ties. If the hail size distribution was perfectly predicted,

the ratio would be equal to 1 across all size bins. Once

again, v2014’s overforecasting of all hail sizes is con-

firmed. HAILCAST v2015 and v2016 improved 19–25-

and 25–50-mm hail forecasts at the expense of .50-mm

hail forecasts. HAILCAST vRerun shows improvement

for .50-mm hail, but at the expense of forecasting too

much 25–50-mm hail. These results suggest vRerun,

while an improvement over the previous three versions

for 50-mm hail, still produces a hail size distribution that

is too sharp. The amount of forecasted ,50-mm hail

needs to be reduced, while the amount of forecasted

large hail (.50mm) needs to be increased. Again,

however, these results are difficult to confirm due to the

low frequency and difficulty associated with observing

very large hail sizes.

More interesting to a forecaster, however, is how

HAILCAST compares to other forecasting tools at their

disposal, such as the storm surrogate fields. Figures 8 and 9

show attributes diagrams for HAILCAST compared to the

storm surrogate fields and the SPC day 1 hail outlooks

for all three years and vRerun for the a priori and best

thresholds. (Note that SPC forecasts are issued only at the

discrete intervals of probability described in section 3c.)

In both Figs. 8 and 9, it is evident that vRerun does over-

forecast 25-mmhail as already noted, although not as badly

as v2014. HAILCAST v2015 and v2016 were particularly

successful for lower forecast probabilities.Using the a priori

thresholds, WMAX indicates nearly equivalent reliability

to theHAILCASTforecasts in v2014, althoughHAILCAST

was able to improve uponWMAX in v2015 and v2016.

With the exception of some underforecasting of lower

probabilities in 2014 and the rerun, COLGMAX tends

to overforecast the occurrence of 25-mm hail. In addition,

DBZ1KMMAX performed poorly as it appeared the

model only rarely produced 60-dBZ reflectivities, while

UHMAX performed the most reliably, producing the

largest BSS values of all the storm surrogate fields using

the a priori thresholds. HAILCAST v2016s BSS score was

very close to that of UHMAX using the a priori threshold.

Comparison of results from the a priori thresholds

(Fig. 8) to the best thresholds (Fig. 9) underscores the need

for calibration of storm surrogate thresholds before using

them to predict hail. In particular, DBZ1KMMAX shifts

from showing no skill at any probability level, to showing

positive skill at many lower forecast probabilities in 2014

and 2015. Likely the model configuration was able to

produce a larger population of 55-dBZ storms. While still

reliable, UHMAX is no longer the most reliable storm

surrogate, with WMAX in 2014 and COLGMAX and

WMAX in the rerun both having larger BSS values.

FIG. 6. Performance diagrams for grid-based verification for all 2014 (blue), 2015 (red), and 2016 (green) NSSL-

WRF ensemble members, and the rerun (yellow) for hail thresholds of (a) 25 and (b) 50mm. Curves extend from

forecasted probabilities of 5%–60%. The upward triangle, star, and downward triangle are forecasted probabilities

of 15%, 30%, and 45%, respectively.
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The SPC forecasts are the only forecasts that show

positive BSS values across all four years; neither

HAILCAST nor a storm surrogate at any threshold was

able to show similar performance. SPC forecasts show an

underforecast of 25-mm hail, but this issue, also seen in

Melick et al. (2014) and Herman et al. (2018), is likely due

to the stairstep nature of SPC probabilities and to the SPC

forecasters being evaluated on and self-calibrated to severe

hail reports as opposed toMESH. If the probabilities were

instead interpolated as a continuous field, the skill of the

SPC outlooks would improve as in Herman et al. (2018).

The results for the grid-based verification for storm

surrogates for the 50-mm forecasts are shown in attri-

butes diagrams for a priori (Fig. 10) and best (Fig. 11)

thresholds as well as the right columns in Table 3. Im-

mediately evident from these figures is the fact that all

forecastingmethods strugglewith forecasting 50-mmhail.

Both COLGMAX and DBZ1KMMAX fail to predict

any 50-mm hail using a priori thresholds, and their skill

improves little when using the best threshold. Using the a

priori threshold, WMAX overforecasts across all time

periods; the results improve when using the best thresh-

old but the simulation still performs poorly at higher

forecast probabilities. The UHMAX results show per-

haps the most consistent reliability across years and the

two sets of thresholds, as is borne out by its higher BSS

values (Table 3) as compared to the other storm surro-

gates. As in the 25-mm hail, v2016 of HAILCAST per-

forms equivalently with UHMAX, showing equivalent

BSS values for the best threshold and improves upon

UHMAX when evaluated with the a priori threshold.

In contrast to the object-based verification, HAILCAST

vRerun does not improve upon v2016 when forecasting

50-mm hail. One possibility for this discrepancy is that

while vRerun improves upon the number of storm objects

with 50-mm hail, it produces a too-large areal coverage of

50-mm hail.

7. Discussion and conclusions

The HAILCAST one-dimensional hail model, embed-

ded within WRF, was tested for three years’ worth of

NOAA Hazardous Weather Testbed (HWT) Spring

ForecastingExperiments (SFEs) from 2014 to 2016.WRF-

HAILCAST was run as part of the NSSL-WRF 4-km

ensemble with 9 or 10 members for all three years, as well

as within the single-physics members of the CLUE 3-km

ensemble during 2016. Verification results and subjective

participant feedback were obtained from the SFEs each

year, and resulting improvements to the hail model were

incorporated yearly. Modifications made to HAILCAST

after the 2016 SFE were tested via rerunning WRF over a

6-week period during 2014 and 2015, using a model do-

main and configuration similar to the NSSL-WRF.

Two different types of verificationmethods were used.

The first, object-based verification, used MODE soft-

ware to match the observed and forecast swaths of hail

across space. This method allowed for evaluation of

FIG. 7. Ratio of the number of forecast to observed grid points over a range of hail size bins.

Shown are the 2014 (blue), 2015 (red), and 2016 (green) NSSL-WRF ensemble members, and

the rerun (yellow). The number of forecast gridpoint values for the NSSL-WRF ensemble is

calculated by taking the mean of all members. A perfect size forecast corresponds to the

horizontal solid black line at y 5 1.0.
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HAILCAST hail forecasting skill without penalizing it

for WRF not successfully forecasting convection. The

second method used neighborhood grid-based verifica-

tion methods to examine WRF-HAILCAST’s skill in

hail forecasting as a whole.

Both methods, in addition to participant feedback,

found that the 2014 version of HAILCAST signifi-

cantly overforecasted all hail sizes. This result was

due to a combination of using embryo sizes retrieved

frompercentile points along the graupel distributionwithin

the microphysical parameterization, and requiring the

hailstone be locked in the center of the updraft until it

could grow big enough to fall out. The graupel distributions

within different WRF microphysics schemes vary widely,

so the assigned embryo sizes and eventual forecast hail size

did as well. To address this inconsistency, before the 2015

HWT, HAILCAST’s embryo sizes were set to constant,

albeit small, values. In the 2015 version ofHAILCAST, the

object-based verification found a small underforecasting

of large ($50mm) hail sizes. The grid-based verifica-

tion agreed, but also noted a significant improvement

in forecasting smaller, 25-mm hail, particularly com-

pared to the 2014 version. Participant feedback from

the 2015 SFE agreed.

In 2016, HAILCAST was modified to include larger

embryo sizes and insertion points that better matched

FIG. 8. Attributes diagram for grid-based verification for 25-mm hail for HAILCAST, storm surrogate fields, and

SPC day 1 convective outlook forecasts from (a) 2014, (b) 2015, (c) 2016, and (d) rerun. The shaded gray area

indicates skillful forecasts; the dashed diagonal line is a forecast of perfect reliability. The horizontal dashed line is a

climatological forecast. The inset shows the frequency of forecasts in each probability bin. Storm surrogate

thresholds for 25-mm hail were the ‘‘a priori’’ thresholds noted by the italicized rows in Table 3.
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with values observed in previous studies. It also

included a time-dependent multiplier to the updraft

speed that parameterized the embryo’s horizontal mo-

tion across the updraft. The combination of these two

improved 25- and 50-mm forecasts compared to the 2015

version as determined by both the object-based and

grid-based verification methods. Subjective feedback

from the 2016 SFE was positive as well. Verification

results were largely consistent across the two 2016 en-

sembles of different horizontal grid spacings, indicating

WRF-HAILCAST’s lessened sensitivity to absolute

updraft speed as well as microphysical parameteriza-

tion. This is an important consideration and indicates

that HAILCAST could be run across multiple model

configurations and horizontal grid spacings without

needing to retune its thresholds.

After the 2016 SFE, in order to address the continued

underforecasting of hail sizes $ 50mm, the use of an

adiabatic cloud liquid water profile was introduced.

Because HAILCAST can be implemented within a

CAM running at 3- or 4-km horizontal grid spacing,

the precipitation-free bounded weak-echo region where

maximumhail growth typically occurs is not fully resolved,

and the cloud liquid water was being artificially scavenged

within the CAM. Thus, an adiabatic cloud liquid water

profile was recreated using model temperature, pressure,

and water vapor fields. With these modifications, WRF-

HAILCAST was rerun. Its skill in forecasting 50-mm hail

improved as determined by the object-based verification

method, but the grid-based verification method showed a

decrease in skill. The rerun version showed an improve-

ment in forecasting ,25-mm hail per the object-based

FIG. 9. As in Fig. 8, but storm surrogate thresholds for 25-mm hail were determined by the highest BSS value over

the 3-yr period, noted by the boldface rows in Table 3.
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verification method, but a decrease in skill of 25–50-mm

hail per both verification methods.

Hourly maximum storm surrogate fields, including

updraft helicity, column-integrated graupel, maximum

column updraft speed, and 1-km radar reflectivity were

also examined as predictors for hail over the same pe-

riod, using both the object- and grid-based verification

methods. Thresholds of the storm surrogate fields were

selected using two methods: one designed to mimic the

decision process of an operator designing a model con-

figuration (a priori), and the second designed to show

the best possible performance of the threshold fields

(best). SPC hail convective outlooks were also evaluated

using the grid-based methods.

Comparison of verification results from the two thresh-

old selection methods emphasizes the need for calibration

of the threshold for the specific model configuration, a

consideration not required by HAILCAST. When using a

priori thresholds, updraft helicity was the most skilled

surrogate at detecting 25-mm hail, but when using the

best thresholds, updraft speed or column-integrated

graupel was the most skilled surrogate in some years.

The performance of the radar reflectivity storm surro-

gate varied widely across the different thresholds.WRF-

HAILCAST v2016 produced results roughly equivalent

in skill to the best-performing surrogate across both

types of thresholds; vRerun did overforecast the occur-

rence of 25-mm hail. SPC outlooks performed the best

of any method. For 50-mm hail, updraft helicity was the

best performer across both sets of thresholds, although

all model-based forecasting methods performed poorly.

However, WRF-HAILCAST vRerun performed com-

paratively to updraft helicity with the best threshold

when evaluated using the objective verification method,

FIG. 10. As in Fig. 8, but for 50-mm hail.
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and v2016 performed equivalently using the regridded

verification method.

The different levels of performance of the storm sur-

rogate fields in forecasting 25- versus 50-mm hail high-

lights potentially contrastingmethods of development for

the two hailstone sizes. It is generally hypothesized that

supercell storm structure is required to produce the nec-

essary strength, size, and volume of updraft to generate

large, 50-mm hail (Foote and Frank 1983; Foote 1984;

Miller et al. 1988; Dennis and Kumjian 2017). Since the

supercell updraft structure would be best captured in the

model by the updraft helicity parameter, it is unsurprising

that updraft helicity is the best-performing storm surro-

gate for 50-mm hail. Conversely, 25-mm hail is more

likely to be generated by multicellular, less-organized,

and nonsupercellular convection. Storm surrogate fields

of updraft speed or column-integrated graupel would

better capture development in the model of these storm

types. The ability of vRerun or v2016 of HAILCAST to

produce forecasts of both 25- and 50-mm hail similar in

skill to the best-performing storm surrogates indicates

that it can skillfully forecast hail across a variety of con-

vective regimes and is worthy of note.

Overall, both object- and grid-based verificationmethods

indicated that HAILCAST improved steadily in re-

sponse to feedback received from three years’ worth of

NOAAHWTs. HAILCAST v2016 was better or at least

comparable in skill to the storm surrogate fields and the

SPC forecasts when predicting both 50-mm hail fore-

casts; only updraft helicity was able to produce 50-mm

hail forecasts comparable in skill to HAILCAST’s.

HAILCAST vRerun further improved its 50-mm hail

forecasts, but at the expense of overforecasting 25-mm

hail. Future research will work to improve the forecast

FIG. 11. As in Fig. 9, but for 50-mm hail.
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hail size distribution, focusing on the importance of

embryo source regions and in-storm hail trajectories, as

already noted by Dennis and Kumjian (2017).
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